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Abstract 
Urbanization in terms of land-use/cover (LULC) 

change has a long-term significant impact on the 

hydrological cycle as the LULC is one of the most 

important influencing parameters to produce curve 

number (CN). The drastic change in LULC changes the 

CN. This change directly affects surface water 

including peak flows. This study aims to assess the 

change in surface runoff due to changes in LULC. 

Hydrological modeling is done for the consistent long-

term behavioral study of surface runoff. The area 

focused on the study is the Kharun river, a tributary of 

the Mahanadi River. For the assessment of the impact 

of LULC change on the catchment discharge, a daily-

step conceptual model soil and water assessment tool 

(SWAT) was applied. Landuse maps were prepared 

with the Landsat Thematic Mapper satellite images.  

 

The future land use was forecasted with the technique 

of spatial statistical modeling. The machine learning 

(ML) tool is used for quantifying the influences on the 

LULC change dynamics and producing the LULC map 

for 2024 and 2030. Remote sensing (RS) and 

geographic information system (GIS) analysis were 

coupled with hydrological SWAT modeling to 

investigate the connection between the LULC change 

and hydrologic regime. The SWAT Model’s calibration 

efficiency is verified by comparing the simulated and 

observed discharge time series at the Patharidih gauge 

and discharge station. The monthly and daily 

calibrations were quite satisfactory, with Nash-

Sutcliffe an efficiency coefficient of 0.86 and 0.67. This 

modeling provides reliable information for sustainable 

management of available water resources of the 

catchment. 
 

Keywords: Impact of landuse Change, Hydrological 

Modelling, Hydrological Response, SWAT, Machine 

Learning. 

 

Introduction 
The understanding of insight information is essential for 

management actions. The growth of population, the change 

in climate, anthropogenic development activities are 

disturbing the water balance of the basin system to cause 

flood or drought event consequently. The hydrological 

processes are complex in nature and to make proper 

management decision, the study of integrated process has to 

be done through modelling2,15,18. There are numbers of 

models for the assessment of different component of 

hydrologic processes. Hydrological modelling is trying to 

simulate the natural processes by adjusting the variables in a 

series of mathematical equations that influence the energy 

and water balances of a river basin system1. The prime 

objective of modelling is to understand the river basin 

system in altered situation and to assess reliable information 

for sustainable development17. 

 

SWAT is an adaptable model that can be used to 

accommodate various environmental processes, resulting in 

more effective catchment management and the production of 

better-informed policy choices. In this study SWAT model 

was tested on daily time scale for simulation of the runoff18. 

The SWAT model takes an advantage of data sets both 

globally and spatially to simulate hydrological processes 

using the data such as digital elevation models (DEMs), soil 

types, weather variations and LULC data. The SWAT model 

was recognized for major work related to hydrological and 

environmental issues. The algorithms programmed into 

SWAT are simple but are derived from physical principles 

of hydrology. SWAT is a continuous modeling tool used to 

simulate runoff of smallest catchment formed in the 

watershed.  

 

SCS-CN method was used for simulation of water balance 

components. The sub-basin and watershed boundaries, 

drainage networks, slope, LULC and soil maps were 

generated in GIS environment. GIS provides the platform to 

work with the complex data set of spatial and temporal 

resolution for hydrologic modeling4. This is a semi-

automatic tool to support analysis, management operations 

and decision making. In this modeling, LULC plays a 

significant role as it is most emphatic parameter for 

hydrologic system. The SWAT-CUP was used for 

calibration and validation program for SWAT models. The 

sensitivity of parameters is estimated and those expected 

sensitive parameters are adjusted towards the optimal values 

in the catchment.  

 

The SWAT model is being used to assess the effects of past 

and forecasted land use on hydrologic processes such as 

surface runoff, lateral movement, groundwater movement, 
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water yield and evaporation and water yield in both basin 

and sub-basins12,14. 

 

The change in LULC over the time is the most influenceable 

factor for the disturbance in the distribution of water on the 

hydrological cycle. To assess the change in LULC, satellite 

image has to process in ERDAS Image processing software. 

In this study, the year 2006, 2012 and 2018 images were 

classified and changes in the LULC were analyzed. To 

assesses the future hydrological response of the basin, 

forecasting of LULC was done by Markov Chain (MC) 

which is most preferable type of machine learning technique 

used to produce land change map of 2024 and 2030.  

 

Markov chain (MC) is extensively used to detect change in 

LULC which signify that the changes in landuse classes are 

random in nature10. The future state modeling in the MC 

system is based on the latest progress state and transition 

probability5,21. The transition probability matrix can be 

prepared by, multi-layer perception (MLP), deciduous forest 

(DF), logistic regression (LR) and support vector machine 

(SVM) methods. These modeling methods were performed 

for the generation of transition potential maps. In multi-layer 

perception (MLP), the feedforward artificial neural network 

creates a set of outputs from a set of inputs.  

 

An MLP is defined by numerous layers of input nodes that 

are linked as a directed graph between the input and output 

layers. Backpropagation is used by MLP to train the 

network. In deciduous forest method, it works by splitting 

the dataset into two sections, the training set and the test set. 

Then select randomly multiple samples from the training 

set9. Categorical dependent variable's output is predicted 

using logistic regression (LR). As a result, the conclusion 

must be categorical or discrete. It can be yes or no, 0 or 1, 

true or false and so on, but instead of presenting the precise 

values like 0 and 1, it presents the probability values that fall 

between 0 and 1.  

 

The SVM method is used to find the optimal line or decision 

boundary that can divide n-dimensional space into classes so 

that we may simply place fresh data points in the appropriate 

category in the future. A hyperplane is the optimal choice 

boundary. SVM selects the extreme points/vectors that aid 

in the creation of the hyperplane. These extreme examples 

are referred to as support vectors and the method is known 

as the Support Vector Machine. 

 

These transition probability matrix methods were revealed 

the expected change. Selection of transition probability 

method was based on accuracy of earlier LULC forecasting 

with all four methods. In LULC modeling, validation was 

done to find out the quality of forecasted LULC maps. For 

the validation, all the four models were used to project 2018 

LULC and compared with the exiting one (supervised 

classified). These transitions are used to forecast future 

scenarios. The transitions were obtained in the form of 

probability matrix which has the information of expected 

alteration from the latest state20. The elements of probability 

matrix represent the chances of relative change from one 

class to another class, thereby producing the future LULC 

map. 

 

The forecasted LULC map helps to understand the water 

distribution in hydrological cycle in changed scenario 

because the change in LULC will alter the volume of water 

flowing on the surface as well as in different compartment 

of hydrological system. The response of surface runoff to 

this change initiates imbalance of water in different 

compartments.  

 

Study area 
The model implemented in the watershed of Kharun river. 

Kharun river lies between 20ᵒ33’30” N to 21ᵒ33’38” N 

latitude and 81ᵒ17’51” E to 81ᵒ55’25” E longitude. The 

Kharun watershed is the sub-basin of Upper Seonath basin. 

This area falls under the planes of Chhattisgarh State in 

India16.  Kharun watershed witnesses the development in last 

two to three decades with fast growing urbanization. The 

total geographical area is 4157.03 km2. Location map of 

Kharun watershed is shown in figure 1 and the general 

characteristics of study area is listed in table 111. 

 

Material and Methods 
Topography: Slope of the Kharun watershed was prepared 

with the help of Shuttle Radar Topography Mission (SRTM) 

30-m resolution data of September 2014 in the digital 

elevation model form. It is also used to produce basin 

boundary and drainage density map of the Kharun basin. 

 

Soil Data: Soil data was collected from Water Resources 

Department, Chhattisgarh, India and Bhuvan Portal (GOI), 

Data are provided at 10 km spatial resolution soil database 

which is a 30 arc-second raster database contained within 

1:50,000 scale of duration 2001 verified as on 2014. This 

data is used to produce soil map of Kharun basin. Kharun 

basin contains four types of soil namely clay loam, sandy 

loam, sandy clay loam and loamy black soil11,15. 

 

Table 1 

General Characteristics of Study Area 

S.N. Parameter Unit Value 

1 Area Kilometer square 4157.03 

2 Elevation Range Meters 449 - 256 

3 Mean Annual Rainfall Millimeters 1200 

4 Mean Annual Flow Millimeters 680 
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Figure 1: Location Map of Study Area16 

 

Landuse data: The LULC due to developmental activity of 

the Kharun basin changes steadily. The LULC maps were 

generated with the help of satellite images of Kharun basin. 

The LULC is the most important parameter to quantify 

development of the area under consideration. It provides a 

window to extract the information about the changes in 

climate and movement of water in hydrological components 

of the system due to anthropogenic activities. There were 

three epicenters of urban sprawl in Kharun basin namely the 

Raipur city, Durg city and Dhamtari city.   

 

Hydrometeorological Data: The hydrometeorological data 

is downloaded from the website http://www.cru.uea.ac.uk/ 
data/ in the form of gridded climatic data with 0.5ᵒ x 0.5ᵒ 

spatial resolution. This is the website of climate research 

unit, UK’s Natural Environment Research Council. For 

modeling, the daily hydrometeorological data are taken for 

the year 2000 to 2018. 

 

Methodology: For the settlement, human beings are 

dependent on land. Their developmental activities 

significantly alter the LULC. The pressure to meet the 

demand of increasing population amplified the stress on the 

hydrological system of nature due to change in LULC. 

Therefore, anthropogenic activities have to be monitored at 

regular interval and future prediction is to be done for the 

establishment of early warning system, thereby reducing the 

risk of environmental degradation. Figure 2 represents the 

working methodology adopted for the study. 
 

The study starts with the collection of satellite imagery, 

DEM, rainfall data, weather data and discharge data from 
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various sources to interpretate the satellite images digital 

image processing technique applied. The multispectral 

images are used to perform supervise classification to extract 

meaningful information3. The Landsat images were used in 

this study with WGS 84 datum which are georeferenced to 

UTM projection. Maximum likelihood method was applied 

to perform supervised classification in ERDAS software. 

The process of supervised classification is based on the 

probability clustering. This method is used the concept of 

similarity of digital number (DN) value. Pixels with same 

DN value clustered into an individual class.  

 

Likewise, other classes are formed. To check the accuracy 

of classified image, Kappa coefficient was calculated using 

random stratified sampling. The corrected classified LULC 

map is analyzed for the temporal change of different LULC 

class. 

 

The simulation tools with remote sensing data in GIS 

platform proved very efficient for future planning and 

current management of natural resources. Markov chain 

method is used in this study to simulate very complex pattern 

of LULC change with temporal resolution. In the MC 

method, a matrix is formed to quantify the change in various 

classes of LULC represented as transition potential model. 

The various LULC features derive its transition from driving 

factors. The selection of driving factors depends on the 

current landuse activity and the availability of the data. This 

transition matrix is then used to forecast the LULC pattern 

for the future scenario.   

 

 
Figure 2: Flow chart of methodology adopted in the study 
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The driving variables selected for the LULC change 

detection were evaluated, based on its explanatory capacity 

and data availability. The driving variables have both the 

static and dynamic role in modelling. Four main driving 

parameters were recognized for the model, including 

“distance to road”, “distance to existing Urban area”, “slope” 

and “digital elevation model (DEM)”. The transition sub 

models are used for preparation of transition potential model 

and transition probability matrix. 

 

The transition matrix contains all the possible transition 

potentials which served as basics in MC, LULC change 

modelling. To understand and simulate a complex non-linear 

relationship between driving factor and land use, multi-layer 

perception (MLP) has been used for generating accurate 

transition potential estimation of LULC change8. The 

selection of suitable transition method depends upon 

correlation matrix with 2018 Classify LULC. 

 

The land change modeler (LCM) was used to generate future 

LULC scenario of 2024 and 2030 in MC modeling. In LCM, 

the prediction process was performed based on transition 

matrix13. The transition matrix develops the record of 

numbers of pixels supposed to convert into another class. 

The future LULC was then developed by multiplication of 

column of transition probability matrix by the number of 

pixels in a corresponding LULC type19. The outcome 

obtained is the forecasted LULC of study area. To analyze 

the result, relative change in LULC class was studied for 

assigned landuse class type and also the net change was 

computed and various graphs were developed. 

 

The footprints of LULC change on the connatural status of 

environment are complicated. The disturbed movement of 

water in different medium affects the various components of 

the hydrologic system. The accessibility of ample amount of 

good quality water was steering the environmental quality as 

well as the economic development of the area. The SWAT 

is a physically based model used to simulate the hydrological 

cycle and its influence on the quantity of the water in 

different compartments of the hydrological system. The 

conceptual SWAT modelling for daily step has been done to 

simulate the hydrological cycle within the river basin. The 

main concern is on the assessment of change in LULC 

impact on movement of quantity of water as surface runoff 

and its associated risk. Climate in the catchment area 

provides inputs in the form of energy and moisture which 

mutually regulate the water balance.   

 

The three fundamental files are required for delineation of 

sub-basins and hydrological response unit (HRU)s in 

SWAT. DEM, soil map and LULC map depicted in figure 3 

were used for model preparation. Three models were 

prepared corresponding to the three LULC maps of year 

2006, 2012 and 2018. All the three models were calibrated 

for the year 2003 to 2005, year 2009 to 2011 and year 2015 

to 2017 corresponding to the LULC of years 2006, 2012 and 

2018.  In SWAT modelling, the catchment is divided into 

sub-watersheds based on a DEM. These sub-watersheds are 

further subdivided into hydrologic response unit (HRUs) 

based on topography, landuse and soil types. The HRU 

model is capable to differentiate evapotranspiration for 

different crops and soils, so the runoff can be predicted for 

each HRU. The total runoff generated in the catchment can 

be calculated and is able to correct the model's estimation6,7.   

 

In this study, the prepared SWAT Model forms 36 HRU’s in 

five sub-basins. The LULC of sub-basin one and two 

contains the maximum area under built up class among the 

other sub-basins. In view of this consideration, the observed 

daily runoff at the Patharidih gauging site was analyzed with 

the model runoff result at the sub-basin outlet gauging site. 

To run the model initially at the start of simulation, three to 

four years as warm-up period are required to feed into the 

model. Modeling parameters are then adjusted for 

calibration. It was found that the model is very sensitive to 

SCS runoff curve number for antecedent moisture condition. 

The curves number gets changed based on the LULC of the 

area.  

 

The sensitivity of the study was done for altered LULC 

condition and comparing the results with the observed data 

at Patharidih gauging stations. The SWAT CUP 2012 is used 

for the analysis. In this, the sensitivity is judged relative to 

the parameters in use in relation to hydrology. A multiple 

regression analysis was performed between the objective 

function values. The t-test is used to identify the relative 

importance of each parameter compared to the others on 

basin hydrology. Larger absolute value indicates greater 

sensitivity of the given parameter. The p-value is an 

indicator to judge the significance level of sensitivity. 

Smaller values indicate a higher level of statistical 

significance for the measured sensitivity. The calibrated 

SWAT model produced satisfactory reproduction of 

monthly and daily runoff processes over the years (2003 – 

2007), (2009 – 2013) and (2015 -2019). 

 

After the calibration and validation of SWAT model for 

three LULC scenario of year 2006, 2012 and 2018, the 

calibration parameters were fixed. Table 2 lists the 15 

calibration parameters which were used in model fed with 

the forecasted LULC of 2024 and 2030 with a synthetic 

rainfall of year 2018 to run the SWAT model. In this 

analysis, year 2018 was considered as base period for the 

assessment of runoff change corresponding to LULC change 

of the basin. This is because year 2018 was used for the 

forecasting of LULC of year 2024 and 2030. 

 

Also, year 2018 was taken for validation of LULC prepared 

by 2006 and 2012. So, 2018 is the year based on which 

LULC maps of year 2006, 2012, 2024 and 2030 were 

validated. Therefore, year 2018 was considered as the base 

year which was used to analyze model results. Runoff was 

then simulated and compared using the same meteorological 

input with five different landuse scenarios of year 2006, 

2012, 2018, 2024 and 2030. 
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Figure 3: SWAT Input data for HRU delineation 

 
Table 2 

Calibration Parameters of SWAT model 

S.N. Parameter Name Description of Parameters 
Fitted 

Value 

Min 

value 

Max 

value 

1 R__CN2.mgt SCS Runoff curve number 0.16 -0.2 0.2 

2 V__ALPHA_BF.gw Baseflow alpha factor (days) 0.9 0 1 

3 V__GW_DELAY.gw Ground water delay (days). 72 30 450 

4 V__GWQMN.gw 
Threshold depth of water in the 

shallow aquifer 
1.4 0 2 

5 V__GW_REVAP.gw Ground water revamp coefficient 0.02 0 0.2 

6 V__ESCO.hru 
Soil evaporation compensation 

factor. 
0.98 0.8 1 

7 V__CH_N2.rte Manning’s “n” value for the main 0.21 0 0.3 

8 V__CH_K2.rte Effective hydraulic conductivity 17.5 5 130 

9 V__ALPHA_BNK.rte Base flow alpha factor 0.9 0 1 

10 R__SOL_AWC(..).sol Available water capacity of the soil -0.14 -0.2 0.4 

11 R__SOL_K(..).sol Saturated hydraulic conductivity. -0.64 -0.8 0.8 

12 R__SOL_BD(..).sol Moist bulk density. 0.05 -0.5 0.6 

13 R__SURLAG.bsn Surface lag 12.025 0.05 24 

14 V__RCHRG_DP.gw Surface runoff lag time. 0.9 0 1 

15 V__EPCO.bsn Plant uptake compensation factor 0.7 0 1 

 

Results and Discussion 
Land use/ land cover change results: Increasing 

population demand raised the sustainability issue. Different 

use of land causes the change in land cover. Landsat TM and 

ETM+ satellite images were successfully exploited for 

producing LULC information of the years 2006, 2012 and 

2018 and for identifying the corresponding changes. The 

digital image classification of remote sensing divides the 

pixels of an image into clusters.  The principles of pixel 

oriented image classification (POIC) were adopted in this 

analysis. The accuracy estimation of classified digital image 
was done on the basis of selection of sample points. Each 

similarity based on the classified LULC map and ground 

truth information was counted as 1 and mismatch was 
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counted as 0. All this information was arranged relative to 

an error matrix.  

 

The Kappa coefficient was calculated according to this 

matrix. The Kappa coefficient is used to estimate the 

relationship between the modeling scenario and reality.  

Maximum likelihood method was executed in ERDAS 

image processing software with accuracy (89.45% Kappa 

Coefficient). Figures 6 (a), (b), (c) depicted the LULC map 

of years 2006, 2012 and 2018. The dynamic nature of 

different land use type revealed the significant changes in 

different LULC was class of the area under study. The 

LULC classified into five classes namely the water body, 

urban, forest, agriculture and pasture land. The developed 

maps reveal that the highest contribution of the agriculture 

landuse class was occupied within the study area. 

Agriculture land was estimated as 46.52% in 2006, 51.51% 

in 2012 and 61.47% in 2018 progressively increasing but the 

forest coverage decreases from 28.23% in 2006 to 21.76% 

in 2012 and 12.46% in 2018. Table 3 shows the areal 

coverage of different land use types. 

 

 

 

 

Figure 4: Relative percentage change detection in LULC between years 2006-2012, 2012-2018 and 2006-2018 
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Table 3 

 Change in Landuse/cover over from the year 2006 to 2030 

S.N. Classes 
2006 Area 

in sq.km 

2012 Area 

in sq.km 

2018 Area 

in sq.km 

2018 Area 

in sq.km 

2024 Area 

in sq.km 

2030 Area 

in sq.km 

1 Agriculture Land 1934.14 46.52% 2141.58 51.51% 2555.65 61.47% 2555.65 61.47% 2512.3 60.43% 2438.6 58.66% 

2 Forest 1172.61 28.23% 904.72 21.76% 517.13 12.46% 517.13 12.46% 206.9 4.97% 206.9 4.97% 

3 Pasture Land 849.44 20.43% 713.59 17.16% 560.942 13.49% 560.94 13.49% 771.7 18.56% 764.4 18.38% 

4 Urban Land 184.28 4.43% 342.68 8.44% 413.94 9.95% 413.94 9.95% 584.3 14.05% 665.4 16% 

5 Water Body 16.56 0.39% 54.45 1.31% 109.37 2.63% 109.37 2.63% 81.7 1.96% 81.7 1.96% 

Total Area 4157.03 100% 4157.02 100% 4157.032 100% 4157.03 100% 4156.9 100% 4157 100% 

 

 
Figure 5: Forecasted LULC of the year 2018 using various forecasting methods 

 

Forecasting Land use/ land cover results: The integration 

of advanced remote sensing and MC modelling was proved 

to be an efficient approach for landuse change identification 

and forecasting in Kharun river basin. LCM is a robust 

function in TerrSet which organizes an array to understand 

the static and dynamics of land use-land cover changeover 

and its correlated impacts in LCM modeled for transition 

potential using the multi-layer perceptron (MLP) neural 

network technique. A complex mathematical function of a 
non-linear neural network has ability to transform multi-

variant input data into desired outputs using a backward 

propagation algorithm, MLP in LCM for transition 

prediction. A typical MLP network consists of an input 

layer, an output layer and one or more hidden layers, each 

with a number of nodes.  

 

Validation was used to find out the quality of forecasted 

LULC maps. For the validation purpose, all the three models 

were used to project 2018 LULC and were compared with 

the supervised classified image. Successful run of MLP with 

suitable accuracy and skill measure is shown in figure 5. The 
probability of transition matrix was generated and fed to 

Markov model in LCM. The results of projected LULC of 

the year 2018 from all the four models were then compared 
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with supervised classified LULC of year 2018.  To 

understand these maps, correlation matrix was calculated in 

table 4 which shows correlation of year 2018 LULC and four 

transition probability generated LULC.  

 

MLP was then used for the forecasting LULC of year 2024 

and 2030. Figures 6 (d) and (e) show the forecasted LULC 

map of years of 2024 and 2030. The areal coverage of 

different class is listed in table 3. Percentage change of 

different LULC types were calculated by K-mean clustering 

approach. Figure 4 shows the relative change in different 

LULC class between the year 2006-2012, 2012-2018 and 

2006-2018. Results reveal that the maximum change is 

detected from fellow/pasture land to agriculture land 

successively in 12 years with 25.29%. This change shows 

the steady development of the basin. 

 

Long term continuous rainfall runoff analysis: The 

hydrological cycle is based on the water balance equation 

simulated by SWAT. The SWAT model developed in this 

study analyses the long-term impacts of settlements in terms 

of LULC change for complex system of river basin. The 

results of three years of changed LULC data have been used 

to pose surface runoff.  

 

Table 4 

Correlation matrix of 2018 Classify LULC with Multi-layer perception (MLP) Deciduous Forest (DF),  

Logistic Regression (LR) and Support vector Machine (SVM)   
 2018 Classify 2018 MLP 2018 SVM 2018 LR 2018 DF 

2018 Classify 1.00     

2018 MLP 0.93 1.00    

2018 SVM 0.92 0.91 1.00   

2018 LR 0.92 0.90 0.90 1.00  

2018 DF 0.85 0.85 0.85 0.82 1.00 
 

   

(a) 2006 (b) 2012 (c) 2018 

  

 (d) 2024 (e) 2030 

Figure 6: Classified and Forecasted LULC of years 2006, 2012, 2018, 2024 and 2030 
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Simulated and changed monthly flows indicate an increase 

of surface runoff for the entire season. The outcome from 

model in a daily time step reveals strong indications of 

increased flood magnitude in changed LULC scenario. 

 

The developed model was calibrated and simulated. The 

observed discharge data at the outlet of the Kharun basin 

used to identify the calibration efficiency. The water 

balancing components of hydrologic cycle are evaluated and 

was used to understand the impacts of LULC change over 

the long period of time. The suitability of different types of 

water management measures depends on the exactness of the 

results obtained by simulation. The output from simulation 

model depends on the capability of the models and the 

quality of model inputs. 

 

The SWAT model calibration parameters were identified by 

developing three different models corresponding to LULC 

of years 2006, 2012 and 2018. Figure 7 reveals the statistical 

graph of simulated and observed discharge at the Patharidih 

gauging site. Surface runoff was then simulated for the same 

rainfall of year 2018 to quantify the changes that have taken 

place due to change in LULC corresponding to the LULC of 

2006, 2012 and 2018. The results are graphically depicted in 

figure 8 (a). 

 

 

 

 

 

 

 

Figure 7: Calibration and validation graphs of observed and simulated discharge for LULC  

of years 2006, 2012 and 2018 
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(a) 

 
(b) 

 
(c) 

Figure 8: Graphical variation of simulated discharge for LULC of years 2006, 2012, 2018, 2024 and 2030 

 

It can be observed that the same model with the same rainfall 

value under different LULC maps produces surface runoff 

with significant change. The simulated runoff discharge is 

progressively increasing as the built-up/urban and 

agriculture area increase. The same procedure is applied to 

the LULC of predicted year 2024 and 2030. From the figure 

7 (b), it is clear that the runoff value is getting more intense 

with time due to LULC change. The overall change in runoff 
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discharge for five years under the same model is shown in 

figure 8 (c). The statistical observation is listed in table 5 for 

the models developed corresponding to LULC of years 

2006, 2012 and 2018. 

 

Land use/cover change impact assessment in sub 

catchment scale: In this modeling, the Kharun was divided 

into 5 sub basins as depicted in figure 9. The effect of LULC 

change on hydrological parameters in the sub basin scale 

was examined. The study area was chosen as the urban area, 

with two of the sub-basins being specifically considered. 

The basin was selected by estimation according to the 

characteristics. For this estimation of the growth of the 

change in the built-up by means of the equation, LULC was 

done between 2006 and 2018 LULC. 

 

First two sub-basins (1 and 2) selected showed already a 

greater ratio of built-up cover at beginning of the considered 

time period in the study to assess impact. Selected sub-basin 

is shown in figure 9 with different colors. 

Therefore, it is appropriate to analyze and to quantify the 

various components of hydrological process taking place in 

the region as per the study of figure 9, which is the most 

essential component of the water balance of the sub basins. 

Eight rainfall measurement stations were distributed 

throughout the catchment area, based on the principle of the 

Thiessen polygon method. Raipur and Bhilai measurement 

station values have been included in this sub-basin. The 

rainfall values in the station are around 1005.05 mm and 

1178.70 mm. The analysis results are shown in table 6. 

 

Conclusion 
This study simulates hydrological model with remote 

sensing data in GIS platform for the assessment of the 

impacts of LULC change on hydrology of the Kharun basin. 

This study proves very effective to understand the 

disturbance caused due to anthropogenic activity in water 

balancing components. A strong connection is developed 

between LULC and surface runoff with the help of this 

study.

 

Table 5 

Statistical compression of observed and simulated daily stream flow 

Statistics 

Observed 

Flow 

(mm/day) 

Simulated 

Flow 

(mm/day) 

Observed 

Flow 

(mm/day) 

Simulated 

Flow 

(mm/day) 

Observed 

Flow 

(mm/day) 

Simulated 

Flow 

(mm/day) 

2003-2007 2009-2013 2015-2019 

Mean  201.74 167.56 141.92 109.95 192.33 160.37 

Median 5.48 11.25 11.62 9.77 2.50 13.36 

Variance  828.43 710.70 576.36 447.71 622.64 491.30 

Standard Deviation  414.22 355.35 288.18 223.86 311.32 245.65 

Kurtosis 4.18 5.87 5.75 6.45 0.76 1.06 

Skewness  2.26 2.53 2.50 2.62 1.46 1.53 

Minimum 0.00 0.26 0.00 0.12 0.00 0.78 

Maximum 1618.00 1485.25 1254.57 1001.03 1023.00 865.61 

 

Table 6 

Statics representation of Water balance components  

W1 

Year Rainfall 

(mm) 

Runoff 

(mm) 

Lateral 

flow (mm) 

Ground water 

contribution to 

stream-flow (mm) 

Actual evapotranspiration 

(mm) 

Water yield 

(mm) 

2006 

1
0
0
5
.0

5
 577.46 0.29 188.39 483.89 482.08 

2012 609.33 0.21 94.15 469.39 510.83 

2018 643.56 0.18 43.34 465.49 520.60 

2024 661.21 0.14 6.31 446.77 550.76 

2030 696.07 0.13 5.92 446.46 551.24 

W2 

Year Rainfall 

(mm) 

Runoff 

(mm) 

Lateral 

flow (mm) 

Ground water 

contribution to 

streamflow (mm) 

Actual evapotranspiration 

(mm) 

Water yield 

(mm) 

2006 

1
1
7
8
.7

0
 797.86 0.29 0.80 393.37 798.11 

2012 831.52 0.26 0.50 363.12 831.75 

2018 873.90 0.20 0.30 323.41 874.07 

2024 802.91 0.21 0.10 321.41 876.05 

2030 879.41 0.21 0.08 318.60 879.58 
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Figure 9: Sub-basins for assessment of LULC change impact on hydrological parameters 

 

On the assessment of the result with certainty, it was 

disclosed that disturbance caused was due to surface 

imperviousness as the altered surface caused significant 

spatial and temporal impact on movement of water in the 

system. The outcome of the SWAT modelling reveals that 

the surface runoff continuously increases over the period 

under consideration. Consequently, percolation, lateral flow 

and evapotranspiration component get decreased and water 

yield increased. The results obtained from the analysis reveal 

the increase in surface runoff over the interval of 6-year 

period continuously which gives indication of the alarming 

situation for the Kharun river basin.  

 

The quantity of water in different compartments is getting 

disturbed due to change in LULC, causing changes in the 

flow path of runoff water. This may consequently reduce the 

surface recharge. The higher quantity of surface runoff may 

spill out from the storm water drains. This may cause flood 

like situation event at low rainfall which may severally affect 

the users.  This study may also help to suggest the early 

warning system for the uncontrolled situation due to 

developmental activity.   
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